Conversion Typed Functions into Relational Form
نویسندگان
چکیده
منابع مشابه
Typed Closure Conversion for Recursively-deened Functions (extended Abstract)
Much recent work on the compilation of statically typed languages such as ML relies on the propagation of type information from source to object code in order to increase the reliability and maintainabilty of the compiler itself and to improve the eeciency and veriiability of generated code. To achieve this the program transformations performed by a compiler must be cast as type-preserving tran...
متن کاملTyped Closure Conversion for Recursively - De ned Functions ( Extended
Much recent work on the compilation of statically typed languages such as ML relies on the propagation of type information from source to object code in order to increase the reliability and maintainabilty of the compiler itself and to improve the e ciency and veri ability of generated code. To achieve this the program transformations performed by a compiler must be cast as type-preserving tran...
متن کاملTyped Normal Form Bisimulation
Normal form bisimulation is a powerful theory of program equivalence, originally developed to characterize Lévy-Longo tree equivalence and Boehm tree equivalence. It has been adapted to a range of untyped, higher-order calculi, but types have presented a difficulty. In this paper, we present an account of normal form bisimulation for types, including recursive types. We develop our theory for a...
متن کاملA Procedure of Conversion of Relational into Multidimensional Database Schema
It is universally recognized that operational information systems lean on the relational model and data warehouses on the multidimensional model. The phrase On-Line Analytical Processing OLAP means summarizing, consolidating, viewing, and synthesizing data according to multiple dimensions. The process of modeling data warehouse may start from operational system’s database. It may be helpful to ...
متن کاملConversion of Dupin Cyclide Patches into Rational Biquadratic Bézier Form
This paper uses the symmetry properties of circles and Bernstein polynomials to establish a series of interesting barycentric properties of rational biquadratic Bézier patches. A robust algorithm is presented, based on these properties, for the conversion of Dupin cyclide patches into Bézier form. A set of conversion examples illustrates the use of this algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Institute for System Programming of the RAS
سال: 2018
ISSN: 2079-8156,2220-6426
DOI: 10.15514/ispras-2018-30(2)-3